

Terminal Arrival: Self-Spacing for Merging and In-Trail Separation

(Concept Element 11)

Richard Mogford, NASA Ames Gary Lohr, NASA Langley

Problem:

Excessive spacing buffers on final approach reduce arrival throughput and airport capacity

Solution:

- Appropriately equipped aircraft are cleared to maintain separation relative to other aircraft during both instrument and visual conditions
 - flight deck displays and guidance for:
 - Merging and conflict detection/resolution
 - Fine tuning of fixed-time spacing

Benefits:

- Increased arrival throughput
- Enhanced controller & pilot shared understanding of traffic management plan

Self-spacing for Merging and In-trail Separation

Research Plan

- Goal: To evaluate feasibility of concept
 - Three phases planned
- Phase 1: Airborne management of post-merge intrail temporal spacing
 - Controller uses DST to set up initial sequence, monitors operations, and controls non-equipped aircraft
 - Pilots given autonomy to tighten spacing using CDTI
- Phase 2: Airborne management of merging and spacing on structured arrival routes
 - Controller uses DST to set up initial sequence, monitors operations, and controls non-equipped aircraft
 - Flight crew manages merge into arrival stream using CDTI
 - Self-spacing on final

Research Plan

- Phase 3: Airborne management of merging and separation o unstructured arrival corridors
 - Controller sets up initial sequencing and monitors airspace for conflicts
 - Structured arrival routes are replaced with arrival regions
 - Participating aircraft cross an arrival boundary and maneuver within designated arrival regions
 - Aircraft are responsible for separation assurance and remaining inside the arrival regions
 - Pilots use CDTI for merging into arrival streams based on sequence assignments provided by the controller
 - Non-participating aircraft remain on structured arrival routes and receive all clearances from the controller

Research Issues

- How to realize benefits:
 - Pre-merge
 - Post-merge
 - Unstructured sector
- Design of CDTI for self-merging and spacing
 - Including CD&R logic
- Design of controller automation
 - Incorporation of planning tools into terminal workstation
- Roles of pilot and controller
 - Distributed decision making and responsibilities
 - Failure situations
 - Mixed equipage
 - Workload and other human factors issues

Self-spacing for Merging and In-trail Separation

Automation Tools: Pilot (Spacing)

Automation Tools: Pilot (Self-Separation)

Self-spacing for Merging and In-trail Separation

Automation Tools: Controller

Activity Roadmap

Activity Roadmap

Presentations in this Session

- Medium-Fidelity Flight Simulator Experiment Results
 - Amy Pritchett Georgia Tech
- Cockpit Display of Traffic Information (CDTI)
 - Oscar Olmos MITRE
- Approach Station Keeping Study
 - Parimal Kopardekar SRC/FAA